El electroscopio es un aparato que permite detectar la presencia de carga eléctrica en un cuerpo e identificar el signo de la misma.
El electroscopio sencillo consiste en una varilla metálica vertical que tiene una esfera en la parte superior y en el extremo opuesto dos láminas de oro o de aluminio muy delgadas. La varilla está sostenida en la parte superior de una caja de vidrio transparente con un armazón de cobre en contacto con tierra. Al acercar un objeto electrizado a la esfera, la varilla se electriza y las laminillas cargadas con igual signo de electricidad se repelen, separándose, siendo su divergencia una medida de la cantidad de carga que han recibido. La fuerza de repulsión electrostática se equilibra con el peso de las hojas. Si se aleja el objeto de la esfera y las láminas, al perder la polarización, vuelven a su posición normal.
Cuando un electroscopio se carga con un signo conocido, puede determinarse el tipo de carga eléctrica de un objeto aproximándolo a la esfera. Si las laminillas se separan significa que el objeto está cargado con el mismo tipo de carga que el electroscopio. De lo contrario, si se juntan, el objeto y el electroscopio tienen signos opuestos.
Un electroscopio cargado pierde gradualmente su carga debido a la conductividad eléctrica del aire producida por su contenido en iones. Por ello la velocidad con la que se carga un electroscopio en presencia de un campo eléctrico o se descarga puede ser utilizada para medir la densidad de iones en el aire ambiente. Por este motivo, el electroscopio se puede utilizar para medir la radiación de fondo en presencia de materiales radiactivos. El electroscopio de hojuelas fue inventado por Bennet.
[editar] Explicación de su funcionamientoUn electroscopio es un dispositivo que permite detectar la presencia de un objeto cargado aprovechando el fenómeno de separación de cargas por inducción. Explicaremos su funcionamiento empezando por ver que sucede con las cargas en los materiales conductores.
Si acercamos un cuerpo desnudo cargado con carga positiva, por ejemplo una lapicera que ha sido frotada con un paño, las cargas negativas del conductor experimentan una fuerza atractiva hacia la lapicera . Por esta razón se acumulan en la parte más cercana a ésta. Por el contrario las cargas positivas del conductor experimentan una fuerza de repulsión y por esto se acumulan en la parte más lejana a la lapicera.
Lo que ha ocurrido es que las cargas se han desplazado, pero la suma de cargas positivas es igual a la suma de cargas negativas. Por lo tanto la carga neta del conductor sigue siendo nula.
Consideremos ahora que pasa en el electroscopio. Recordemos que un electroscopio está formado esencialmente por un par de hojas metálicas unidas en un extremo. Por ejemplo una tira larga de papel de aluminio doblada al medio.
Si acercamos la lapicera cargada al electroscopio, como se indica en la figura, la carga negativa será atraída hacia el extremo más cercano a la lapicera mientras que la carga positiva se acumulará en el otro extremo, es decir que se distribuirá entre las dos hojas del electroscopio.
La situación se muestra en la figura: los dos extremos libres del electroscopio quedaron cargados positivamente y como las cargas de un mismo signo se rechazan las hojas del electroscopio se separan.
Si ahora alejamos la lapicera, las cargas positivas y negativas del electroscopio vuelven a redistribuirse, la fuerza de repulsión entre las hojas desaparece y se juntan nuevamente.
¿Qué pasa si tocamos con un dedo el extremo del electroscopio mientras esta cerca de la lapicera cargada? La carga negativa acumulada en ese extremo "pasará" a la mano y por lo tanto el electroscopio queda cargado positivamente. Debido a esto las hojas no se juntan cuando alejamos la lapicera.
Este Blog tiene como finalidad ayudar en tareas de Ciencias (fisica). Espero y les sea de ayuda. nota; cuando no s epublique lo are a la brevedad posible... Atte: Staff
te gusto?
jueves, 17 de marzo de 2011
Campo Electrico
El campo eléctrico es un campo físico que es representado mediante un modelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica.[1] Matemáticamente se describe como un campo vectorial en el cual una carga eléctrica puntual de valor q sufre los efectos de una fuerza eléctrica dada por la siguiente ecuación:
(1)
En los modelos relativistas actuales, el campo eléctrico se incorpora, junto con el campo magnético, en campo tensorial cuadridimensional, denominado campo electromagnético Fμν.[2]
Los campos eléctricos pueden tener su origen tanto en cargas eléctricas como en campos magnéticos variables. Las primeras descripciones de los fenómenos eléctricos, como la ley de Coulomb, sólo tenían en cuenta las cargas eléctricas, pero las investigaciones de Michael Faraday y los estudios posteriores de James Clerk Maxwell permitieron establecer las leyes completas en las que también se tiene en cuenta la variación del campo magnético.
Esta definición general indica que el campo no es directamente medible, sino que lo que es observable es su efecto sobre alguna carga colocada en su seno. La idea de campo eléctrico fue propuesta por Faraday al demostrar el principio de inducción electromagnética en el año 1832.
(1)
En los modelos relativistas actuales, el campo eléctrico se incorpora, junto con el campo magnético, en campo tensorial cuadridimensional, denominado campo electromagnético Fμν.[2]
Los campos eléctricos pueden tener su origen tanto en cargas eléctricas como en campos magnéticos variables. Las primeras descripciones de los fenómenos eléctricos, como la ley de Coulomb, sólo tenían en cuenta las cargas eléctricas, pero las investigaciones de Michael Faraday y los estudios posteriores de James Clerk Maxwell permitieron establecer las leyes completas en las que también se tiene en cuenta la variación del campo magnético.
Esta definición general indica que el campo no es directamente medible, sino que lo que es observable es su efecto sobre alguna carga colocada en su seno. La idea de campo eléctrico fue propuesta por Faraday al demostrar el principio de inducción electromagnética en el año 1832.
Charles Coulumb
Charles-Augustin de Coulomb (Angulema, Francia, 14 de junio de 1736 - París, 23 de agosto de 1806) fue un físico francés. Se recuerda por haber descrito de manera matemática la ley de atracción entre cargas eléctricas. En su honor la unidad de carga eléctrica lleva el nombre de culombio (C). Entre otras teorías y estudios se le debe la teoría de la torsión recta y un análisis del fallo del terreno dentro de la Mecánica de suelos.
Fue el primer científico en establecer las leyes cuantitativas de la electrostática, además de realizar muchas investigaciones sobre: magnetismo, razonamiento y electricidad. Sus investigaciones científicas están recogidas en siete memorias, en las que expone teóricamente los fundamentos del magnetismo y de la electrostática. En 1777 inventó la balanza de torsión para medir la fuerza de atracción o repulsión que ejercen entre sí dos cargas eléctricas, y estableció la función que liga esta fuerza con la distancia. Con este invento, culminado en 1785, Coulomb pudo establecer el principio, que rige la interacción entre las cargas eléctricas, actualmente conocido como ley de Coulomb: . Coulomb también estudió la electrización por frotamiento y la polarización, e introdujo el concepto de momento magnético. El culombio o coulomb (símbolo C), es la unidad derivada del Sistema Internacional de Unidades para la medida de la magnitud física cantidad de electricidad (carga eléctrica). Nombrada en honor de Charles-Augustin de Coulomb.[1]
Fue educado en la École du Génie en Mézieres y se graduó en 1761 como ingeniero militar con el grado de Primer Teniente. Coulomb sirvió en las Indias Occidentales durante nueve años, donde supervisó la construcción de fortificaciones en la Martinica. En 1774, Coulomb se convirtió en un corresponsal de la Academia de Ciencias de París. Compartió el primer premio de la Academia por su artículo sobre las brújulas magnéticas y recibió también el primer premio por su trabajo clásico acerca de la fricción, un estudio que no fue superado durante 150 años.
Durante los siguientes 25 años, presentó 25 artículos a la Academia sobre electricidad, magnetismo, torsión y aplicaciones de la balanza de torsión, así como varios cientos de informes sobre ingeniería y proyectos civiles. Coulomb aprovechó plenamente los diferentes puestos que tuvo durante su vida. Por ejemplo, su experiencia como ingeniero lo llevó a investigar la resistencia de materiales y a determinar las fuerzas que afectan a objetos sobre vigas, contribuyendo de esa manera al campo de la mecánica estructural. Otro aporte de Coulomb es la llamada Teoría de Coulomb para presión de tierras, publicada en 1776, la cuál enfoca diferente el problema de empujes sobre muros y lo hace considerando las cuñas de falla, en las que actúa el muro, además toma en cuenta el ángulo de inclinación del muro y del suelo sobre el muro de contención. También hizo aportaciones en el campo de la ergonomía.
Coulomb murió en 1806, cinco años después de convertirse en presidente del Instituto de Francia (antiguamente la Academia de Ciencias de París). Su investigación sobre la electricidad y el magnetismo permitió que esta área de la física saliera de la filosofía natural tradicional y se convirtiera en una ciencia exacta. La historia lo reconoce con excelencia por su trabajo matemático sobre la electricidad conocido como "Leyes de Coulomb".
Fue el primer científico en establecer las leyes cuantitativas de la electrostática, además de realizar muchas investigaciones sobre: magnetismo, razonamiento y electricidad. Sus investigaciones científicas están recogidas en siete memorias, en las que expone teóricamente los fundamentos del magnetismo y de la electrostática. En 1777 inventó la balanza de torsión para medir la fuerza de atracción o repulsión que ejercen entre sí dos cargas eléctricas, y estableció la función que liga esta fuerza con la distancia. Con este invento, culminado en 1785, Coulomb pudo establecer el principio, que rige la interacción entre las cargas eléctricas, actualmente conocido como ley de Coulomb: . Coulomb también estudió la electrización por frotamiento y la polarización, e introdujo el concepto de momento magnético. El culombio o coulomb (símbolo C), es la unidad derivada del Sistema Internacional de Unidades para la medida de la magnitud física cantidad de electricidad (carga eléctrica). Nombrada en honor de Charles-Augustin de Coulomb.[1]
Fue educado en la École du Génie en Mézieres y se graduó en 1761 como ingeniero militar con el grado de Primer Teniente. Coulomb sirvió en las Indias Occidentales durante nueve años, donde supervisó la construcción de fortificaciones en la Martinica. En 1774, Coulomb se convirtió en un corresponsal de la Academia de Ciencias de París. Compartió el primer premio de la Academia por su artículo sobre las brújulas magnéticas y recibió también el primer premio por su trabajo clásico acerca de la fricción, un estudio que no fue superado durante 150 años.
Durante los siguientes 25 años, presentó 25 artículos a la Academia sobre electricidad, magnetismo, torsión y aplicaciones de la balanza de torsión, así como varios cientos de informes sobre ingeniería y proyectos civiles. Coulomb aprovechó plenamente los diferentes puestos que tuvo durante su vida. Por ejemplo, su experiencia como ingeniero lo llevó a investigar la resistencia de materiales y a determinar las fuerzas que afectan a objetos sobre vigas, contribuyendo de esa manera al campo de la mecánica estructural. Otro aporte de Coulomb es la llamada Teoría de Coulomb para presión de tierras, publicada en 1776, la cuál enfoca diferente el problema de empujes sobre muros y lo hace considerando las cuñas de falla, en las que actúa el muro, además toma en cuenta el ángulo de inclinación del muro y del suelo sobre el muro de contención. También hizo aportaciones en el campo de la ergonomía.
Coulomb murió en 1806, cinco años después de convertirse en presidente del Instituto de Francia (antiguamente la Academia de Ciencias de París). Su investigación sobre la electricidad y el magnetismo permitió que esta área de la física saliera de la filosofía natural tradicional y se convirtiera en una ciencia exacta. La historia lo reconoce con excelencia por su trabajo matemático sobre la electricidad conocido como "Leyes de Coulomb".
Tabla De Densidades.
Material Kg/m
Agua 1000
Agua 998
Aire 129
Aluminio 2700
Lleso 1800
Cobre 8890
Vidrio 2600
Oro 19300
Hierro 1860
Plomo 11340
Mercurio 13600
Agua 1000
Agua 998
Aire 129
Aluminio 2700
Lleso 1800
Cobre 8890
Vidrio 2600
Oro 19300
Hierro 1860
Plomo 11340
Mercurio 13600
Las Teorias Atomicas
Es una teoria de a naturaleza de la materia, que afirma que esta compuesta por pequeñas particulas llamadas atomos
Suscribirse a:
Entradas (Atom)